TadaoYamaokaの日記

山岡忠夫Homeで公開しているプログラムの開発ネタを中心に書いていきます。

dlshogi

将棋AIの進捗 その24(自己対局による強化学習)

これまではAperyの初期局面集にfloodgateの棋譜を加えたものを初期局面集として自己対局を行っていたが、中終盤のバリエーションを増やすため、 やねうら王教師局面からAperyの初期局面集を作成(評価値200以内局面を抽出) 初期局面集から詰みの局面を除く と…

使用ライブラリをAperyに変更

dlshogiは今までAperyから派生したelmo_for_learnのソースを使用していましたが、最新のAperyで修正されたバグの修正を取り込むため使用ライブラリをAperyに変更しました。 入玉宣言に修正が入っていたので、そこだけ取り込むつもりでしたが、ついでにすべて…

将棋AIの進捗 その22(探索と評価の直列化)

前回、ねね将棋が世界コンピュータ将棋選手権で高い探索速度を出していたので、バリューの計算中に末端ノードから新しく探索を行う方法で簡易な実装をして実験を行った。 しかし、末端ノードから新しく探索を始めると、新しく始めた探索のバリューの計算され…

将棋AIの進捗 その21(探索の深さ)

dlshogiでは、MCTSの末端ノードでバリューを計算し、その値をバックアップしているが、GPUでバリューの計算が終わるまで待機している。 バリューの計算が終わる前に次の探索を始めると、ノードにバーチャルロスのみが反映された状態で、勝敗の推定値が反映さ…

第28回世界コンピュータ将棋選手権 出場結果

第28回世界コンピュータ将棋選手権に参加してきました。dlshogiは、一次予選に7位で通過しましたが、二次予選では1勝8敗で24チーム中最下位という結果でした。dlshogiは、今回注目されていたCrazy Shogiと同じくモンテカルロ木探索とディープラーニングを組…

dlshogi(wcsc28版)のビルド済みファイル公開

dlshogiの第28回世界コンピュータ将棋選手権バージョンのビルド済みファイルを公開しました。第5回将棋電王トーナメントバージョンは、Chainerの環境構築が必要でしたが、USIエンジンの実行のみであれば不要になっています。 CUDA、cuDNNはライセンス上の問…

将棋AIの進捗 その20(自己対局による強化学習)

自己対局による強化学習を続けています。 現在、1サイクルあたり500万局を自己対局で生成するサイクルを17サイクル実行したところです。 教師ありでelmoで深さ8で生成した4.9億局面を事前学習したモデルを初期モデルとしています。 初期モデルは、収束前のLe…

将棋AIの進捗 その19(初期局面集)

自己対局による強化学習を行う際に、対局の開始局面には、初期局面集を使用している。 AlphaZeroでは、固定手数まではノイズを加えルートノードの訪問回数に応じた確率で手を選択することで局面の多様性を確保している。 しかし、この方法ではモデルに依存し…

将棋AIの進捗 その18(スケーラビリティ)

AWSのp3.8xlargeインスタンスを試験的に借りてGPUを増やした場合の性能を測定しました。 Linuxだとマルチスレッドの性能がでないので、OSはWindowsです。p3.8xlargeのマシンスペックは以下の通りです。 Tesla V100 GPUs 4 vCPUs 32 Main Memory 244GiB 各GPU…

将棋AIの進捗 その17(AWS対応を検討)

世界コンピュータ選手権の参加者のマシンスペックをみると、マシンスペック高すぎです( ゚Д゚)GPUを2枚詰んだ個人のPCで参加しようと思っていましたが、GPU8枚とかで来られたらモデルと探索の性能ではどうにもならなそうです。 モンテカルロ木探索は並列化の効…

将棋AIの進捗 その16(マルチGPU)

将棋AIをChainerを使用した実装からcuDNNを使用した実装に変更できたので、マルチGPUでの性能を測定した。 Chainerを使用した場合 Python経由でChainerを使用しているPythonのGIL機構によってマルチスレッドの性能に制限がある。 Chainerを使用した場合の、…

将棋AIの進捗 その15(cuDNNを使用)

モデルの学習にディープラーニングフレームワークのChainerを使用していますが、対局時にChainerで推論を行うと、Python経由で呼び出すためマルチGPUで動かす際、Python経由だとGILによってマルチスレッドの性能が出なくなる。 また、実行環境にPythonが必要…

将棋AIの進捗 その14(自己対局による強化学習)

自己対局による強化学習の検証をはじめた。強化学習の手法は、以前の日記で書いた通りで、Alpha Zeroの手法を参考にして、1手800シミュレーションで自己対局を行う。自己対局→学習のサイクルを繰り返してモデルを成長させる。 1回のサイクルで、どれだけの自…

将棋AIの進捗 その11(マルチGPU対応)

GPUが2つになったので、dlshogiをマルチGPUに対応させました。ニューラルネットワークの計算要求をキューにためてミニバッチで推論を行う仕組みにしていたので、キューをGPUごとに用意して、探索スレッドを一方のキューに対応させて、キューを監視してニュ…

将棋AIの進捗 その10(Linux対応)

ChainerのMNISTサンプルをUbuntuで動かすとWindowsよりも早いことがわかったので、dlshogiの自己対局をUbuntuで行えるようにした。AperyのMakefileを参考に、g++でビルドできるようにした。Windowsで32スレッドで1手800シミュレーションで自己対局を行うと、…

dlshogiのバグ報告

電王トーナメントバージョンを公開しましたが、致命的なバグがありました。移動を表すラベルにバグがあり、いくつかの異なるラベルが同じラベルに割り振られていました。 このバグのため学習の精度がかなり落ちていたと思われます。モデルの学習からやり直し…