TadaoYamaokaの開発日記

個人開発しているスマホアプリや将棋AIの開発ネタを中心に書いていきます。

2016-09-01から1ヶ月間の記事一覧

dlibをWindowsにインストールする(補足)

前の日記で、WindowsのAnacondaでインストールしたPythonにdlibをインストールする方法を記載したが、jpegライブラリが有効になっていないため、サンプルが実行できなかった。解決方法が見つかったので、その方法を記す。Bash on Windowsでは、dlib公式のペ…

dlibの顔のパーツ検出をマンガで試してみた(追試)

昨日の日記でdibでマンガの顔器官検出を試したころ、全く検出できなかった。HOG特徴+SVMであらかじめ顔検出をして切り出した画像を対象とした場合どうなるか追加で検証を行った。画像の切り出しは、顔検出スクリプト(detect_object_detector.py)を修正して、…

dlibの顔のパーツ検出をマンガで試してみた

前回の日記でサンプルで試した顔器官検出を、マンガの画像で試してみた。 学習データ準備 サンプルでは特徴点が68個あるが、入力するのが大変なので、顔の輪郭5点と左右の眼それぞれ4個ずつの13個とした。前回説明した通り、imglabツール(前の日記参照)の引…

dlibで顔のパーツ検出を行う

前の日記で、dlibの顔検出を試したが、dlibには目、鼻、口、輪郭といった顔のパーツを検出する機能も実装されている。 英語では「Facial Landmark Detection」という用語が使われている。 日本語では「顔器官検出」と訳すようだ。ここでは、サンプルを試す手…

dlibをWindowsにインストールする

前々回の日記で、Bash on Windowsにdlibをインストールする方法を書いたが、Anaconda 4.1(64-bit)でインストールしたPython 3.5にもインストールできたので、その方法を示す。 ※2016/9/27追記:この方法でインストールしてもJPEGライブラリが有効にならない…

dlibでマンガの顔認識をやってみた

昨日の日記でBash on Windowsを使ってdlibで顔検出を行うことができたので、自分で用意した画像を使って、顔検出ができるか試してみた。↓この記事のようにアニメの画像での顔認識を試した例はいくつかありましたが、マンガでの例がなかったので試してみまし…

Bash on Windowsでdlibを使って顔検出する

最近、物体検出に興味がありネットの記事を調べていたら、こちらの記事で使われていたdlibによるHOG特徴量+SVGが検出精度が高いらしい。bohemia.hatenablog.comdlibはC++の総合的な機械学習のライブラリで、Python用のインターフェースも用意されている。自…

VSTプラグイン(vst_pitch)を更新

VSTプラグイン(vst_pitch)を更新しました。更新内容は、解析精度の改善と、オクターブ表示を440Hz=A3にするオプションの追加です。 オプションは要望を頂いたので対応しました。個人的には自分自身で一番使っているプログラムですが、Windows専用でDAWソフト…

自己相関関数と窓関数

以前の日記で、自己相関関数はウィーナー=ヒンチンの定理でFFTを使って高速に計算できることを書いた。自己相関関数は、同じ波形データ同士をずらしながら掛け合わせた値の合計であることを説明したが、その定義通り計算する場合は窓関数は特に必要ない。 …

ボーカル音程モニター(Vocal Pitch Monitor)をアップデートその2

前回の日記で、ボーカル音程モニター(Vocal Pitch Monitor)のアップデートについて書きましたが、解析精度に少し問題があったので、再度アップデートしました。どうやら母音が「う」の場合に、倍音を誤検知しやすくなっていました。 アップデートで倍音構成…

ボーカル音程モニター(Vocal Pitch Monitor)をアップデート

Androidアプリのボーカル音程モニター(Vocal Pitch Monitor)をアップデートしました。 マイクから入力した音声のピッチをリアルタイムで表示するアプリです。今回のアップデートで、C2以下の音程の解析精度を改善しました。 歌声やギターなどの弦楽器の音声…

FFTと窓関数に関する考察

前回の日記で、ピークの周波数の周辺のパワースペクトルの和がエネルギー(全周波数のパワースペクトルの総和)に占める割合について書いたろころ、Chachayさんからスペクトル漏れについてご指摘を頂いた。chachay.hatenablog.comFFTについてのはじめの日記を…

FFTとエネルギーについての考察(続き2)

前回の続きです。ピークの周波数の周辺のパワースペクトルの和がエネルギー(全周波数のパワースペクトルの総和)に占める割合を、400Hzから500Hzの範囲で0.1Hzおきに調べてみた。 fset = np.linspace(400, 500, 1001) range = [1, 3, 5] for r in range: peak…